skip to main content


Search for: All records

Creators/Authors contains: "Flach, Carol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au( i ), Rh( i ) and Pd( ii ) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. 
    more » « less
  2. null (Ed.)
  3. Direct α-alkylation of carbonyl compounds represents a fundamental bond forming transformation in organic synthesis. We report the first ketone-alkylation using olefins and alcohols as simple alkylating agents catalyzed by graphene oxide. Extensive studies of the graphene surface suggest a pathway involving dual activation of both coupling partners. Notably, we show that polar functional groups have a stabilizing effect on the GO surface, which results in a net enhancement of the catalytic activity. The method represents the first alkylation of carbonyl compounds using graphenes, which opens the door for the development of an array of protocols for ketone functionalization employing common carbonyl building blocks and readily available graphenes. 
    more » « less